The impact of smoker status on mortality risks

Chessman Wekwete

Hannover Life Re Africa
Agenda

1. Introduction and data sources
2. Prevalence of smoking
3. Distribution of deaths by smoker status
4. Impact of smoking on mortality rates
Introduction

Aims

• Prevalence
 • Provide prevalence statistics for various populations

• Causes of death
 • Do causes of deaths differ by smoker status?

• Mortality rates of smokers and non-smokers
 • Does a difference exist?
 • What is the magnitude of the relative risk (RR)?
 • Does RR depend on age, gender, rating class etc?
 • Does RR differ for various causes of deaths?
Introduction

Summary of data sources

• Insured lives
 • Hannover Life Re Africa data (HLRA) : 2005 - 2009
 • Continuous Statistical Investigations (CSI): 1999 - 2002
 • Continuous Mortality Investigations Bureau (CMIB): 1999 - 2003

• Population data
 • South African Demographic and Health Survey (SADHS): 2003
 • Health Survey for England (HSE): 2006
Agenda

1. Introduction and data sources
2. Prevalence of smoking
3. Distribution of deaths by smoker status
4. Impact of smoking on mortality rates
Prevalence of smoking

Overview

<table>
<thead>
<tr>
<th>Assured lives</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medically underwritten lives in South Africa (HLRA data)</td>
<td>28%</td>
<td>20%</td>
</tr>
<tr>
<td>Assured lives in South Africa (CSI data)</td>
<td>34%</td>
<td>19%</td>
</tr>
<tr>
<td>Assured lives in the United Kingdom (CMIB data)</td>
<td>21%</td>
<td>19%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Population (above age 20)</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>South African population (SADHS data)</td>
<td>35%</td>
<td>10%</td>
</tr>
<tr>
<td>United Kingdom population (HSE data)</td>
<td>24%</td>
<td>21%</td>
</tr>
</tbody>
</table>
Prevalence of smoking
Prevalence in different data sources for males
Prevalence of smoking
Prevalence by socio-economic class for males

<table>
<thead>
<tr>
<th>Socio-economic class</th>
<th>HLRA</th>
<th>CSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>24%</td>
<td>25%</td>
</tr>
<tr>
<td>Class 2</td>
<td>34%</td>
<td>33%</td>
</tr>
<tr>
<td>Class 3</td>
<td>40%</td>
<td>36%</td>
</tr>
<tr>
<td>Class 4</td>
<td>44%</td>
<td>34%</td>
</tr>
</tbody>
</table>
Agenda

1. Introduction and data sources
2. Prevalence of smoking
3. Distribution of deaths by smoker status
4. Impact of smoking on mortality rates
Distribution of deaths
Analysis of lives below age 40

- Smoking impact on mortality
 - Must be acting through accidental risk
 - Males: impact may be similar for accidental and natural deaths
 - Females: impact may be greater for accidental deaths
Distribution of deaths
Analysis of lives above age 40

- Smoker impact greater for natural causes than accidental
Distribution of deaths

Summary

- Death risks for smokers aged below 40
 - Males: Accidental deaths significant
 - Natural deaths possibly have significance
 - Females: Accidental deaths potentially more significant
- Death risks for smokers aged above 40
 - Natural risks more important for smokers
- Modelling and analysis considerations
 - Gender and age differential
 - Cause of death differential
Agenda

1. Introduction and data sources
2. Prevalence of smoking
3. Distribution of deaths by smoker status
4. Impact of smoking on mortality rates
Analysis of mortality rates
Overview of methods - GLM

- Measures analysed
 - ‘all cause’, ‘accidental’, and ‘natural’ death rates

- Generalised linear models (GLM)
 - Applied to the HLRA data
 - A model of the number of deaths
 - GLM defined by
 - Poisson assumption of errors
 - Log link function
 - Linear predictor
 - Age, gender, smoker status, duration, socio-economic class
 - Two way interaction of these factors (e.g. smoker and gender)
Analysis of mortality rates
Overview of methods – ratio of rates analysis

- Consider two independent Poisson variables X_N and X_S with corresponding parameters μ_N and μ_S.
- Define ρ as the ratio of the two rates: $\rho = \frac{\mu_S}{\mu_N}$.
- Observe deaths x_S, x_N and exposures E_S, E_N.

- Estimate of ρ is $\frac{x_S \cdot E_N}{E_S \cdot x_N}$.
- Approx 95% CI is $\frac{E_N}{E_S} \left\{ \frac{2x_S x_N + 1.96^2 \cdot x \pm \sqrt{1.96^2 \cdot x \cdot (4x_S x_N + 1.96^2 x)}}{2x_N^2} \right\}$.

Analysis of mortality rates
Ratio of ‘accidental’ rates - HLRA males

• GLM results – HLRA data
 • Ratio: $\rho = \frac{\mu_S}{\mu_N} = 1.48$, 95% CI: $[1.33:1.68]$
 • Age, gender, SEC and duration not significant in ratios

• Check using ratios of crude rates
 • No comparable data from other data sets available
 • Ratios by age and gender

<table>
<thead>
<tr>
<th>Broad age group</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below age 40</td>
<td>161%</td>
<td>164%</td>
</tr>
<tr>
<td>Above age 40</td>
<td>131%</td>
<td>147%</td>
</tr>
</tbody>
</table>
Analysis of mortality rates
Ratio of ‘all cause’ rates

- GLM results – HLRA data
 - Difference is significant and depends on age
Age	20	30	40	50	60	70
Relative risk for smokers	1.58	1.73	1.88	2.05	2.24	2.44
 - Differs by duration: e.g. age 40: 1.56 (duration 0), 1.88 (ultimate)
 - Gender and SEC not significant in ratio

- Is gender independence reasonable
 - No comparable data from other data sets available
 - Consider age and gender specific ratios
 - HLRA data
 - CSI data
Analysis of mortality rates
Ratio of ‘all cause’ rates - CMIB

Ratio of smokers to non-smokers mortality rates

Age group
Males ratio 95% LCL for males 95% UCL for males Females ratio
Analysis of mortality rates

Ratio of ‘all cause’ rates - CSI males

- Ratio of smokers rates higher for males
 - Is the difference due to gender?
 - GLM model on CSI data would provide insight
Analysis of mortality rates
Ratio of ‘natural causes’ rates - HLRA data

- Ratio:

<table>
<thead>
<tr>
<th>Age</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative risk for smokers</td>
<td>1.26</td>
<td>1.52</td>
<td>1.83</td>
<td>2.20</td>
<td>2.64</td>
<td>3.18</td>
</tr>
</tbody>
</table>

- Gender impact may be present but not statistically significant
Conclusion

- Smokers have higher mortality rates
- Accidental causes deaths
 - Risk is estimated at 1.48 that of non-smokers
 - Does not depend on age and gender
- Natural causes deaths
 - Risk rises with age, depends on duration
 - Does not depend on gender and SEC
- GLM on CSI, CMIB studies required to confirm results